Relationships between ocean-atmosphere surface heat and moisture fluxes and weather regimes

Carol Anne Clayson
Woods Hole Oceanographic Institution

William B. Rossow Celebration Symposium
New York, NY
7 June 2017
Motivation and background

- Use of ISCCP cluster weather states (Jakob and Tselioudis 2003)
 - Tropical convection and MJO (Tromeur and Rossow, 2010; Chen and Del Genio, 2009)

Datasets:
- ISCCP Extratropical Cloud Clusters (35N/S, 2.5°x2.5° 1985-2007, 3-hr)
- SEAFLUX (1998-2007, 0.25°x0.25° 3-hr), LHF/SHF/Surface Variables

Product Homogenization:
- Fluxes regridded and resampled to ISCCP 2.5x2.5
- ISCCP 3-hr used to assign a daily class based on the most frequent cluster

More convection

Less convection
Decomposition of surface fluxes by weather state

- Weather regimes result in distributions of fluxes with different mean and extreme characteristics.

- These are associated with changes in the bulk variables, as should be expected.

- Both wind speed and near-surface humidity gradients are particularly well stratified, though the latent heat flux means are less so.

- Indicates potential compensations.
Extended Tropics
Cloud Radiative Effect

from Oreopoulos and Rossow (2011)
Compositing methodology

- Conditionally sample data using weather state classification (WS1-WS8; most convective to least convective)
- Further sampled based on compositing index to evaluate low-frequency coupled variability
- Use NOAA Climate Prediction Center (CPC) indices for ENSO and MJO

Examining differences in means can be decomposed as changes in class mean (A), changes in RFO (B), and covariant changes (C)

\[\Delta \bar{X}_{(2-1)} = \sum_{i=1}^{K} RFO_i^1 \delta \bar{x}_i + x_i^1 \delta RFO_i + \delta \bar{x}_i \delta RFO_i \]

\[\text{A} \quad \text{B} \quad \text{C} \]
MJO Composites by strength

- Composite MJO based on index strength not time-lagging
- All three regions typically show increased evaporation during convective phase and decreased evaporation during suppressed phase
- The Indo-Pacific region changes \(\rightarrow \) more wind-driven Eastern Pacific changes \(\rightarrow \) more near-surface moisture gradient changes
 - But: EIO more coherent near-surface moisture changes than WP
MJO Composites – Decomposition into Weather states

- Decompose LHF into weather state means and relative frequency of occurrence (RFO)
- Systematic variations of both weather state means and RFO with MJO index
- Both variations contribute to total impact of a given weather state on mean energy exchange associated with MJO evolution
MJO Composites – Decomposition of changes

- The difference between convective, neutral, and suppressed conditions can be quantitatively decomposed into Mean-, RFO-, and covariant-driven change.

- Convective vs. Neutral changes are primarily set by the systematic variation of class properties rather than RFO changes.

1. The net shortwave and latent heat flux tendencies are the largest components of the surface heat flux budget.

2. The mixed layer depth is an important contributor to the observed surface heat flux tendency pattern.
- EIO and WP: deeper ML in convective; EP: slightly deeper ML in suppressed
- WP: LHF variability has roughly same effect on SST tendency throughout MJO. EP: LHF much higher effect on variability during convective phase
- EIO: Even shallower ML in suppressed phase, but still large LHF due to Q_s-Q_a difference: LHF variability strongest effect during suppressed phase
But what regimes?

- Weather states based on cloud properties can be more difficult to intercompare between satellite observations and models.
- To compare MERRA/GEOS-5 we have chosen to use temperature and humidity profile information from the model.
 - Easier to intercompare/access state variables in “model world”.
 - Combined T/Q information into a single thermodynamic variable (θ_e).
 - K-Means cluster analysis to obtain 10-clusters.
LHF Regime Mean Differences

- Can sort out overall biases as function of stability regime
- Overall, GEOS-5 shows systematically higher evaporation rates, but this “bias” is higher for more unstable conditions (~15Wm$^{-2}$) vs. more stable (~5Wm$^{-2}$)
- Closest agreement in neutral condition and very stable conditions
In addition to difference between regime means, the frequency of regime can also impact difference in total mean fields.

For day 0 — when GEOS-5 is most data constrained — relative frequency of occurrence of regimes is remarkably similar to that in MERRA, albeit with some difference.

Moving away from initialization however, GEOS-5 is unable to maintain proper distribution of unstable regimes, particularly over West Pacific and Atlantic Warm Pool.
Looking globally, transition of stability regimes as function of lag for each regime

Because regimes frequencies partition full distribution, compensation between regimes

There is clear preference for GEOS-5 to eliminate most unstable profiles within first few days toward more neutral profile
Retrieval Biases and Cloud Weather States

- The structure in the retrieval (Qa, top) biases appear to be co-aligned with patterns of cloud weather states
 - WS are defined using ISCCP cloud-top histograms
- The largest biases in several of the Qa retrievals are aligned best with Global WS 7 (Tselioudis et al. 2012)
 - Mostly clear, w/ thin boundary layer cloudy
Cloud impacts on passive microwave empirical retrieval algorithms

- Near-surface humidity, air temperature, and wind speed retrievals show strong regime-dependent conditional biases.

- Conditional-RMS also appears dependent on cloud weather state, but to lesser extent.

- When the underlying component of the conditional biases are regionally dependent, it is likely the application of “grouped” retrievals will result in regional biases.
Passive microwave provide direct information on the clouds in the atmospheric FOV.

We can decompose the observed, $T_{B_{obs}}$, into clear-sky and cloudy-residual components,

$$T_{B_{obs}} = T_{B_{clr}} + T_{B_{cld}}$$

Then retrieve using:

$$\{Qa, Ta, Wspd, SST\} = F^{-1}(T_{B_{clr}})$$

Conditional-Bias and RMS of near-surface parameters against the Clear-Sky TB appear smaller and more consistent across all of the weather regimes.
Summary

- Cloud-based weather states can be used to provide improved understanding of surface energy flux variability, model performance, and satellite retrievals of near-surface properties.

- MJO variability is particularly well decomposed using ISCCP weather regimes from convective to neutral and suppressed states.

- Different regions in the tropics show MJO variability being driven by different processes, with differing effects on SST due to MLD variability.

- To fully realize air-sea coupling effects, cloud regimes most likely need to be coupled with at least boundary layer winds.
Many thanks to Bill

- Birthing the idea of SeaFlux
- Giving me a chance for leadership
- Protecting against Clivarians
- Warning/encouraging about creating a data set
- Making me think about seasonal/diurnal variability
- Urging me to challenge the status quo
- And much more