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_Motivation and background |

Use of ISCCP cluster weather states
(Jakob and Tselioudis 2003)

® Tropical convection and MJO
(Tromeur and Rossow, 2010;
Chen and Del Genio, 2009)

Datasets:

e |SCCP Extratropical Cloud
Clusters (35N/S, 2.5°x2.5° 1985-
2007, 3-hr)

e SEAFLUX (1998-
2007,0.25°x0.25° 3-hr),
LHF/SHF/Surface Variables

Product Homogenization:

® Fluxes regridded and resampled
BERSCCP 2.5x2.5

® |SCCP 3-hr used to assign a daily
class based on the most frequent
cluster

More ..

convectiorm

Less
convectiot

- >o




Decomposition of

surface fluxes by
weather state

Weather regimes result
In distributions of
fluxes with different
mean and extreme
characteristics

These are associated
with changes in the
bulk variables, as
should be expected

Both wind speed and
near-surface humidity
gradients are
particularly well
stratified, though the
latent heat flux means
are less so

® |ndicates potential
combpencatinne

karmralizes Frequenay
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Extended Tropics
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Extended Tropics
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Normalized Frequency

Cloud Radiative Effect
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Conditionally sample data using weather state classification (WS1-WS8;
most convective to least convective)

Further sampled based on compositing index to evaluate low-frequency
coupled variability

Use NOAA Climate Prediction Center (CPC) indices for ENSO and MJO

NOAA CPC Nino 3.1 Anomaly
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NOAA CPC MJO Index
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"= Examining differences in means can be decomposed as changes in
class mean (A), changes in RFO (B), and covariant changes (C)

K
AX, ) = ¥ RFO;6X, +X,6RFO, + 6X,0RFO,
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Latent Heat Flue (black) vs. MJO Indax Strength, Eustern Indian Ocean
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Decompose LHF into weather state means and relative frequency of occurrence
(RFO)

Systematic variations of both weather state means and RFO with MJO index
Both variations contribute to total impact of a given weather state on mean

energy exchange associated with MJO evolution
LHF, MJO Decomposition by Weather State,Eastern Indian Ocean

CPC MJO Index




MJO Composites — Decomposition of changes

The difference between convective, neutral, and suppressed
conditions can be quantitatively decomposed into Mean-,RFO-, and
covariant- driven change

Convective vs. Neutral changes are primarily set by the systematic
variation of class properties rather than RFO changes

Changes in Western Pacific: wind speed. East Pacific: Qs-Qa. Eastern
Indian: both
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MILD and surface flux effects

on SST tendencies

Ensemble Mean Net SWR (into ocean) W/m?, DJF Net SWR °C/month, DJF
] y %—\}/ﬁ \ / \},;_-\49_\ 250 ] ¥ ?'\'\’; , 3 o N%‘\ J g0 /ﬁ‘i}t ?
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1. The net shortwave and latent heat flux tendencies are the largest
components of the surface heat flux budget.

2. The mixed layer depth is an important contributor to the observed
surface heat flux tendency pattern.



EIO and WP: deeper ML in
convective; EP: slightly
deeper ML in suppressed

WP: LHF variability has
roughly same effect on SST
tendency throughout MJO.
EP: LHF much higher effect
on variability during
convective phase

EIO: Even shallower ML in
suppressed phase, but still
large LHF due to Qs-Qa
difference: LHF variability
strongest effect during
suppressed phase

wm?
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Lawent Heat Flux (black} vs. MJO Indax Strength, Eustern Indian Ocean
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But what regimes?

Weather states based on cloud
properties can be more difficult

to intercompare between

satellite observations and

models

To compare MERRA/GEOS-5 we
have chosen to use temperature
and humidity profile information s
from the model

* Easier to l
Intercompare/access state -
variables in “model world”

Combined T/Q information into
a single thermodynamic variable ™ &
(6e)

Thermodynamic Clusters using 6, K=10

—Cluster-1, rfo: 0.7%
— Cluster-2, rfo: 8.3%
Cluster-3, rfo: 11.0%|
—Cluster-4, rfo: 10.5%
Cluster-5, rfo: 14.2%
—Cluster-6, rfo: 12.0%
Cluster-7, rfo: 6.9%
Cluster-8, rfo: 18.6%
—Cluster-9, rfo: 13.0%
Cluster-10, rfo: 5.0%

600
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1000t

» K-Means cluster analysis to “ (6 J "Equivalent Pofential femperdture difierence from Stitace "
aobtain 10-cliictarce
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LHF Regime Mean Differences

MERRA vs. GEOS-5 (lag 0) Means, Latent Heat Flux by Cluster
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C!uster 1=Most Unstable to 10-Most Stable

IIH RRA
L GECS-S

|

Can sort out overall
biases as function of
stability regime

Overall, GEOS-5 shows
systematically higher
evaporation rates, but
this “bias” is higher for
more unstable
conditions (~15Wm-2)
vs. more stable (~5Wm-

°)

Closest agreement in
neutral condition and
very stable conditions



GECS-b Forura Most Frequent Cluster, S\ewereber, Laz: 0 deys

LHF Regime|
Frequency
Differences

In addition to difference between regime
means, the frequency of regime can also
iImpact difference in total mean fields

For day O —when GEOS-5 is most data
constrained —relative frequency of
occurrence of regimes is remarkably similar
to that in MERRA, albeit with some
difference

Moving away from initialization however,
GEOS-5 is unable to maintain proper
distribution of unstable regimes,
particularly over West Pacific and Atlantic
Warm Pool




LHF Regime Frequency Ditferences —

Another View

- GEQOS-5 Evolution of Frequency of Stability Regimes
Looking globally, - FETS-o BVOUon o Frequency of SIebITy regmes
transition of stability —

M2

regimes as function of
lag for each regime

MlLag3
L4
MlLag5
MlLag6 |
ML 7
Lag 8
Lag9
Lag 10
Lag 11
Lag 12 |

Because regimes
frequencies partition full
distribution,
compensation between
regimes

0.1
There is clear preference
for GEOS-5 to eliminate

Lag 13
Lag 14
Lag 15
. ® MERRA
most unstable profiles 005 VI
within first few days
toward more neutral .
profile -

CIuster 1 Most Unstableto 10= Most Stable

0.15)-

Relative Frequency of Occurrence (%)
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Retrieval Biases and

Cloud Weather States

* The structure in the retrieval
(Qa, top) biases appear to be
co-aligned with patterns of
cloud weather states

« WS are defined using ISCCP
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« The largest biases in several of
the Qa retrievals are aligned
best with Global WS 7
(Tselioudis et al. 2012)

« Mostly clear, w/ thin
boundary layer cloudy
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Cloud impacts on passive microwave

empirical retrieval algorithms

Near-surface humidity, air
temperature, and wind speed
retrievals show strong regime-
dependent conditional biases

Conditional-RMS also
appears dependent on cloud
weather state, but to lesser
extent

When the underlying
component of the conditional
biases are regionally
dependent, it is likely the
application of “grouped”
retrievals will result in regional
biases

aned Qa and Wspd VS. observed F15 TBS
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New Opportunities —

Retrievals using new algorithm

Binned Qa and Wspd vs. Clear-Sky simulated F15 TBs

Passive microwave provide
direct information on the
clouds in the atmospheric FOV “:

« We can decompose the observed,
TB.ps, iNnto clear-sky and cloudy-
residual components,

TBobs = TBC|I’ + TBcld
 Then retrieve using:

{Qa,Ta,Wspd,SST} = F-1(TB,,)

e

4

o
g ©
o

. Conditional-Bias and RMS of L{J i Ilﬂ‘ I |||| i i{ll

near-surface parameters against [
the Clear-Sky TB appear smaller

and more consistent across all of

the weather regimes
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Cloud-based weather states can be used to provide
Improved understanding of surface energy flux
variability, model performance, and satellite
retrievals of near-surface properties

MJO variability is particularly well decomposed
using ISCCP weather regimes from convective to
neutral and suppressed states

Different regions in the tropics show MJO variability
being driven by different processes, with differing
effects on SST due to MLD variability

To fully realize air-sea coupling effects, cloud
regimes most likely need to be coupled with at least
boundary layer winds



Many thanks
to Bill

Birthing the idea of
SeaFlux
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leadership
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challenge the
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