Level of Neutral Buoyancy, Deep Convective Outflow and Convective Cores: New Perspectives Based on 5-Years of CloudSat Data

Hanii Takahashi*, Zhengzhao Johnny Luo, and Graeme L Stephens

*Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California
†Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

© 2017 California Institute of Technology
Parcel Theory: a simple path of a rising air parcel

- **Lifting Condensation Level (LCL)**
- **Level of Neutral Buoyancy (LNB)**
- **Level of Free Convection (LFC)**
- **Environmental Temperature**
- **Convective available potential energy (CAPE)**

Overshooting
Definition of LNB from Parcel Theory

LNB \sim 15.8 \text{ km}, \text{ where}
\text{MSE} = \text{saturated MSE}

MSE (\text{Moist Static Energy}) = gz+C_pT+L_vq \ (\text{J/kg})
Ideal World based on Parcel Theory

- $\lambda = 0$

- No air mass interaction between the air parcel and its surrounding environment.

- Only accounts for the original condition of surface soundings.

Real World

- $\lambda = \frac{1}{M} \frac{\partial M}{\partial z}$: the rate of change of the mass flux into the plume with height

- Convection interacts with the environment in complicated ways.

- Convective entrainment affects buoyancy.
Radar reflectivity as a proxy for convective mass transport

G. L. Mullendore,¹ A. J. Homann,¹ K. Bevers,² and C. Schumacher²

Received 6 November 2008; revised 27 April 2009; accepted 11 June 2009; published 22 August 2009.

[1] More observations of vertical mass transport in deep convection are needed to improve dynamical understanding of detrainment processes and for verification of transport models. A methodology for using radar reflectivity as a direct observation of vertical transport of mass from the boundary layer to the upper troposphere and lower stratosphere is investigated, and the “level of maximum detrainment” (LMD) is proposed. The case investigated is the 26 January 1999 squall line from the Tropical Rainfall Measuring Mission Large-Scale Biosphere-Atmosphere field campaign. Echo top heights and dual-Doppler derived divergence profiles are used to define the mass detrainment range. Over 10% of anvil echo tops occurred above the sounding-derived level of neutral buoyancy of 15.4 km during the mature stage of the storm, and convective tops reached above 18 km. Anvil ice water content, with a simple correction for ice fall speed, is found to be a good proxy for both the LMD, which for the storm analyzed is 11.25 km, and for the detrainment range of 6 to 17 km. More cases need to be analyzed to confirm the strength of this methodology, but the case study presented shows a strong correlation between anvil properties determined from radar reflectivity and the mass detrainment profile. Thus, radar reflectivity can be used as an indicator of the LMD to test model convective and transport parameterizations.

Objective: Compare LNB based on Parcel Theory vs. Cloud Objects

LNB_sounding:
- Based on parcel theory using ambient soundings from ECMWF-AUX.

LNB Crimea:
- LNB_CTH: The highest detrainment level.
- LNB_CBH: The lowest detrainment level.
- LNB_maxMass: The maximum mass detrainment level (maximum radar reflectivity within the anvil column).

Only the first 20 km of the outflow is used to minimize ice sedimentation effect.
Selection of convective core and anvil object

(1) Cloud mask >20
(2) Find convective core (ETH 10dBZ >10 km, CB<2km, continuous radar echo from CB to CT)
(3) Find anvils (CB ≥ 5km & anvil length ≥ 20km)
Distribution of LNB_sounding vs. LNB_observation

- LNB_sounding: the Warm Pool has the highest LNB.
- For LNB_observation, tropical Africa and Amazonia has the highest LNB.
The difference between LNB_sounding and LNB_observation

A measure of the magnitude of the entrainment effect

\[\text{MSE} = gz + C_p T + L_v q \ (J/kg) \]
Deep convective clouds over the Warm Pool tend to be more diluted than those over the tropical Africa and Amazonia.
Internal vertical structure of convective cores

\[CFTD \]

![Graphs showing temperature and reflectivity distributions for different regions.](image)

- Less diluted core
- More diluted core
- Difference

- Tropical land has more occurrences of larger radar at higher altitudes.
- Attenuation due to heavy precipitation is more severe in tropical land than the Warm Pool.
Higher LNB maxMass are associated with a moister midtroposphere, because a moister environment reduces the effect of entrainment dilution. The trend is especially pronounced for smaller systems.

LNB_maxMass decreases with convective system size. The size dependence has to do with convective life stage.
Conclusions:

- The difference between LNB_sounding and LNB_observation can be interpreted as a measure of convective dilution: the Warm Pool is more diluted than the two tropical land regions (Africa and Amazonia).

- Comparisons in internal vertical structure of DCCs, including vertical extent of large radar echoes and near-surface attenuation by rain, suggest that the two tropical land regions contain more intense convective cores than the Warm Pool.

- Higher LNB maxMass is associated with a moister midtroposphere and smaller convective systems.

Congratulations Bill Rossow!
1) Over the Warm Pool, the difference between LNB_sounding and LNB_maxMass is much more outstanding during DJF than JJA. 2) Deep convection over the tropical Africa and Amazon tends to be less diluted from JJA to SON. 3) Convective dilution is the most active during MAM & JJA in Asian monsoon region (over Indian Ocean).
The mean difference of CTH – ETH 20 dBZ

- (1) Smaller over land than over ocean.
- (2) Central Africa has smallest distance.
- (3) Largest distance is over west Pacific during DJF than JJA.
- (4) Deep convection over the tropical Africa and Amazon tends to be less diluted from JJA to SON.
- (5) Largest distance is over Indian Ocean during MAM & JJA.

Liu et al., 2007

Fig. 10. The mean differences of cloud-top height calculated from minimum $T_{B_{11}}$ and the maximum 20-dBZ echo-top height for CCFs ($=210$ K with 2A25 rain) in $5^\circ \times 5^\circ$ boxes and their seasonal variations. Units are height differences in km that the 20-dBZ echo top is below the IR top height.
Entrainment and the Size of Convective Cores

\[
\frac{\partial MSE_p}{\partial z} = \lambda (MSE_e - MSE_p)
\]

LNB_CTH=14km

\[\lambda = 0 \% / km \]

\[\lambda = 5 \% / km \]

\[\lambda = 10 \% / km \]

\[MSE = gz + C_p T + L_v q \ (J/kg) \]

MSE_e

sat MSE_e
Definition of LNB from Parcel Theory

\[\lambda = \text{some value} \% / \text{km} \]

\[\text{LNB} \approx 15.8 \text{ km, where} \]

\[\text{MSE} = \text{saturated MSE} \]

\[\text{MSE} = g z + C_p T + L_v q \ (\text{J/kg}) \]

\[\lambda = 5 \% / \text{km} \]

\[\text{LNB} \approx 14.0 \text{ km} \]

\[\lambda = 10 \% / \text{km} \]

\[\text{LNB} \approx 11.8 \text{ km} \]
Why don’t we find the LNB from Cloud Object from CloudSat instead of using parcel theory!?

LNB based on parcel theory
The convective entrainment rates are smaller for the Warm Pool than the two land regions.

A negative correlation between DCC size and bulk entrainment rate.

Larger convective cores are better protected from the environment and thus are less diluted by entrainment.
Cloud Top Height vs. Convective System Size
3. Definition of Stages

CloudSat: Collocate with ISCCPCT

Growing: Before reaching the min TB

Mature: Between growing and dissipating

Dissipating: After reaching the max radius

(Futyán and Del Genio, J Clim 2007)

Takahashi and Luo (JGR 2014)
3. Definition of Stages

Growing: Before reaching the min TB

Mature: Between growing and dissipating

Dissipating: After reaching the max radius

(Futyan and Del Genio, J Clim 2007)