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a strong spectral signature of thermodynamic phase and
demonstrates the robustness and conservative nature of
the AIRS-phase algorithm.

b. Heterogeneous scenes

Heterogeneous scenes are defined to be those that
contain 3–10 CALIPSO cloudy pixels each with one or
more cloud layers. For those CALIPSO pixels with
more than one cloud layer, the phase of the topmost
cloud layer is included in the CALIPSO-phase statis-
tics. The spatial distributions and mixtures of clouds
within the AIRS FOV contribute substantially to the
behavior of the AIRS cloud-thermodynamic-phase dis-
crimination. Kahn et al. (2011) used AIRS and MODIS
observations to show the impacts of subpixel cloud
heterogeneity on IR thermodynamic-phase assessment.
Their two-dimensional histograms of BTD12312960 and
the brightness temperature between 1231 and 1227 cm21

(8.15mm) (BTD123121227), which are sensitive to cloud
phase and column water vapor, show distinctly different

signatures for homogeneous and heterogeneous clouds.
Although the Kahn et al. (2011) study did not include
CALIPSO, the lessons are likely applicable for AIRS
and CALIPSO.
The cloud phase for heterogeneous clouds is sum-

marized in Table 3. The frequency of occurrence for
single-layer and heterogeneous scenes is comparable in
the case of AIRS, although a slight reduction in liquid
and ice frequencies, and a corresponding increase by
4.5% in unknown, are shown. The reduction in AIRS
liquid-cloud frequency is likely tied to the lack of a
strong liquid-cloud spectral signature in scenes with
broken clouds. The differences between the CALIPSO
single-layer and heterogeneous cases are more notice-
able. A large reduction in ice clouds and an increase in
mixed-phase clouds are observed relative to the single-
layer clouds, with virtually no change in water amount.
This result is unsurprising because more mixed-phase
clouds are expected from CALIPSO in heterogeneous
scenes than in single-layered homogeneous scenes. That

FIG. 6. (a) Similar to Fig. 4a and (b) similar to Fig. 5a, but with the CALIPSO mixed-phase category treated differently: CALIPSO
mixed-phase pixels with more than 3 times as many ice pixels as water pixels are included in the CALIPSO ice category and those mixed-
phase pixels with more than 3 times as many water pixels as ice are included in the CALIPSO water category.
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Frequency Dependent Complex Refractive Indices of Supercooled Liquid Water and Ice
Determined from Aerosol Extinction Spectra
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Complex refractive indices of supercooled liquid water at 240, 253, 263, and 273 K, and ice at 200, 210, and
235 K in the mid infrared from 460 to 4000 cm-1 are reported. The results were obtained from the extinction
spectra of small (micron-size) aerosol particles, recorded using the cryogenic flow tube technique. An improved
iterative procedure for retrieving complex refractive indices from extinction measurements is described. The
refractive indices of ice determined in the present study are in good agreement with data reported earlier. The
temperature region and range of states covered in the present work are relevant to the study of upper tropospheric
and stratospheric aerosols and clouds.

Introduction
More than half of the total solar radiation incident upon Earth

is absorbed by water, of which approximately 1016 kg is
normally present in the atmosphere. A major portion of this
water exists as vapor, making it the largest contributor to
greenhouse warming of the atmosphere. The contribution of the
condensed phases to radiative forcing is far less certain.
Depending on the size of particles and their shape, water aerosol
may contribute either to cooling, or warming, or to both. It is
therefore essential to quantify the effects of these particles on
the Earth’s radiative balance. This, in turn, requires optical data
for a variety of thermodynamic states over a wide range of
temperatures.
Because of their great importance, the optical properties of

liquid water and ice in the mid infrared at atmospheric pressure
are well-documented.1-6 Accurate data for the wavelength-
dependent complex refractive indices of ice, n* ) n + ik, cover
the temperature range between 100 and 266 K. For water,
however, broad band mid infrared data are only available at
room temperature, and there is a significant gap in the data at
temperatures below 273 K. Supercooled liquid water droplets
smaller than about 10 µm in diameter can exist for long times
at temperatures down to about 238 K,7 and it is the purpose of
the present work to fill this gap in the temperature and
wavelength dependent optical data. These conditions occur
naturally in the lower stratosphere/upper troposphere, where
supercooled water aerosol is observed in deep convective and
cirrus clouds.8
Aerosol extinction spectroscopy has been used to determine

optical constants since the pioneering works by Avery et al.9
and Milham et al.10 Later, the refractive indices of ice at lower
temperatures were obtained using the extinction spectra of ice
aerosol particles.3 The starting point in both cases is “small
particle spectra” - for which the scattering amplitude is
negligible in the infrared, and hence the measured spectrum is
a first approximation for the imaginary part of the refractive
index k. Another way of obtaining an initial k spectrum is by
the thin film technique.11 Neither of these methods, however,
is applicable to supercooled water. For thin film measurements,
the interaction with the optical substrate changes the infrared
absorption features significantly and also, the large volume due

to the two macroscopic dimensions leads to early freezing,
making deep supercooling of samples (below ∼ 255 K)
extremely difficult to achieve. In the case of the aerosol
approach, it is very difficult to prepare samples of small (less
than 0.3 µm) liquid water particles with high enough number
density to provide reasonable signal-to-noise ratio. Due to the
Kelvin effect and the rapid diffusion of water molecules, as well
as collision induced coagulation, these small particles grow
quickly to larger ones having diameters on the order of 1 µm.
These have a significant scattering amplitude in the extinction
spectrum. These difficulties have been overcome recently with
the invention of a new method to correct the imaginary part of
the refractive index, starting with approximate values as a first
guess.12 On the basis of this approach, we have developed an
automated procedure for the determination of optical constants
from extinction measurements of scattering aerosols.
Our motivation was to obtain a set of complex refractive

indices for supercooled water, for use in our analysis of the
liquid-to-crystal transition in water aerosols,13 and also to
provide more accurate data to the remote sensing and climate
modeling communities. With this in mind, we calculated water
and ice optical constants over a range of temperatures using
the extinction spectra of small particles that were generated using
the cryogenic flow tube technique.13,14 In the present paper, we
shall report the optical constants for ice and supercooled liquid
water in the frequency range between 460 and 4000 cm-1. An
improved iterative procedure for retrieving complex refractive
indices from extinction measurements is also reported.

Calculation Methodology
This section describes the iterative procedure for determining

complex refractive indices from a set of IR extinction spectra,
I(ν), and a first guess absorption spectrum, k0(ν). The details
of the algorithm are given in Appendix. Extinction spectra for
this purpose can be computed using various techniques, such
as Mie Theory,15 T-matrix,16 or Discrete Dipole17,18 methods.
Here we use the spherical approximation (Mie theory) and the
Bohren and Huffman code15 for ease of calculation, and because
it is formally correct in the case of liquid particles. Although
the ice particles are not spherical, they are small (less than 2
µm in diameter), so a spherical approximation is adequate for
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